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I. INTRODUCTION

Self-avoiding walk �SAW� models and their variants have
been used for decades to gain insight into the physics of real
polymer systems, with remarkable success �1�. Such models
are now again of interest as toy models of biopolymers such
as DNA and RNA molecules �2–6�. The effect of the base
pairing is modeled by allowing the walk to visit the lattice
bonds twice. In the context of the work presented here, the
difference between DNA-like models and RNA-like models
are the allowed walk configurations; DNA models allow at
most four links of the walk to meet at a site �see Fig. 1�,
while RNA allow up to eight.

Recently several models of this type have been presented,
either as models for biopolymers, or simply as interesting
variants of restricted random walk models, in which different
weightings are given to multiply visited sites or bonds �7–9�.
What is missing from all these models are interactions rep-
resenting the interactions with solvent molecules. In this pa-
per we propose a step at filling this void.

In this paper, we introduce a variant of the lattice two-
tolerant self-avoiding walk model �2,3,10� which mimics the
zipping/unzipping of a DNA model. In the model introduced
here we also include solvent effects by including an attrac-
tive interaction energy between nonconsecutively visited
nearest-neighbor sites. In this paper we present an extended
mean-field-type calculation of the phase diagram �the Bethe
approximation�. The phase diagram is found to be unexpect-
edly rich. In many DNA models there is a further restriction
in that bases are only allowed to pair up if they are the same
distance from one end along each of the two chains. This
restriction is relaxed in the model presented here.

II. MODEL

The model studied in this paper consists of a noncrossing
random walk on a square lattice limited to visit each bond
and each site at most twice. The model is chosen to model
the zipping/unzipping of a DNA molecule, thus the allowed
configurations of the two-tolerant walk are further restricted
such that a site may only be visited twice if one of the ad-
joining bonds is doubly visited. The allowed configurations
are shown in Fig. 1.

Each segment of the walk represents a monomer �base�
whereas doubly visited bonds represent a coarse-grained de-
scription of paired bases. The difference in affinity of the

DNA molecule with itself and with the solvent may be mod-
eled by a solvent-mediated attractive interaction between
nonconsecutive visited nearest-neighbor sites on the lattice.
Solvent-mediated interactions carry an attractive energy �S
�0 and doubly visited bonds yield an attractive energy �
�0.

The thermodynamic behavior may be investigated by in-
troducing the grand-canonical partition function, Z, from
which many of the relevant thermodynamic quantities may
be calculated. The grand-canonical partition function is given
by

Z = �
walks

KN�NI�N2, �1�

where NI is the number of solvent-mediated interactions, N2
is the number of doubly visited bonds and �=exp�−��S�, �
=exp�−���, and �=1 /kT. The fugacity, which controls the
average length of the walk, is denoted by K, and N is the
total length of the walk. The two are related through
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FIG. 1. Configurations at a lattice site on the square lattice.
Polymer bonds are represented by solid lines while the solvent in-
teractions are represented by dashed lines. The empty-site configu-
ration is not shown here.
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�N� = K
� ln Z

�K
. �2�

The average length increases as K is increased.

III. BETHE APPROXIMATION

In this section we briefly describe the Bethe approxima-
tion. For a good discussion of the Bethe approximation see
Ref. �11�. The model of interest is studied on the infinite
Bethe lattice chosen to have the correct local geometry. The
lattice chosen for the square lattice is shown in Fig. 2. The
Bethe lattice is a hierarchical lattice built recursively from a
central bond by adding k new bonds to each extremity. To
each dangling bond we add k more bonds, and so on, such
that no loops are formed. Due to the hierarchical nature of
the lattice, it is possible to build up expressions for the par-
tition function recursively. To see this, it is convenient to
consider the lattice as being divided into two branches, left
and right for the example shown in Fig. 2. We may introduce
the partial partition functions W�

l and W�
r for the left- and

right-hand branch, respectively. These partition functions are
conditional upon the state � of the central bond. In our
model there are four possible states: �1� empty �state 0�, �2�
occupied with a link of the walk �state 1�, �3� occupied with
a solvent-mediated nearest-neighbor interaction �state S�, and
�4� occupied with a doubly visited bond �state 2�.

By symmetry, the left and right branches will have the
same partial partition functions, and so the l ,r designation
will be dropped. Each branch may be subdivided into k sub-
branches, such that the W� may be expressed in terms of the
partial partition functions of the sub-branches. This proce-
dure may be continued until the boundary bonds are reached.
In order to do this explicitly, it is convenient to introduce the
notion of the “generation” of a link, n, which is simply the
distance of the link from the boundary. As a concrete ex-
ample, consider the calculation of W1

�n�, the partial partition
function conditional on the central bond being occupied by a
link of the walk. We must consider all the configurations on
the bonds of the generation �n−1�, of which there are three
for the two-dimensional square lattice example shown in Fig.
2, which are compatible with the occupied central bond.
Clearly there must be a bond leaving in one of the three

directions; the other two bonds may be empty or occupied by
a solvent-mediated interaction. The weight W1

�n� is simply the
sum of the Boltzmann weights corresponding to all these
configurations, multiplied by the weight for adding the cen-
tral link. To avoid the divergence of the partial partition func-
tions it is convenient to introduce normalized partition func-
tions w�

�n�=W�
�n� /qn �4� with qn chosen such that

�
�

w�
�n� = 1. �3�

This leads to recursion relations for the �normalized� partial
partition functions:

w�
�n� =

	�

qn
�
��i	

C�,��i	

i=1

k

w�i

�n−1�, �4�

where ��i	 is the set of states of the k links forming genera-
tion n−1, 	� is the Boltzmann weight of the bond added at
generation n, and the factor C�,��i	

=1 if the choice of the
states ��i	 is compatible with the central state �, and zero
otherwise.

It is known that there is no phase transition on the infinite
Bethe lattice, since the number of boundary sites grows too
rapidly. However the recursion relations may be used in the
center of the lattice as self-consistency equations for the two
point mean-field theory for the corresponding square lattice.
In this case, we assume we have translational invariance and
drop the generational superscripts. The equilibrium states are
then given by solutions of the following set of recursion
relations:

w0 =
1

q
�w0

3 + 3w1
2�w0 + wS + w2� + 3w2

2�w0 + wS�	 , �5�

w1 = 3
K

q
w1�w0 + wS��w0 + wS + 2w2� , �6�

wS = 3
�� − 1�

q
�w1

2�w0 + wS + w2� + w2
2�w0 + wS�� , �7�

w2 = 3
K2�

q
�w0 + wS��w1

2 + w2�w0 + wS�� , �8�

q = w0
3 + 3w1

2�w0 + wS + w2� + 3w2
2�w0 + wS� + 3Kw1�w0 + wS�


�w0 + wS + 2w2� + 3K2��w0 + wS��w1
2 + w2�w0 + wS��

+ 3�� − 1��w1
2�w0 + wS + w2� + w2

2�w0 + wS�� . �9�

The partial partition functions give the contribution to one
branch of the total partition function, the total �normalized�
partition function conditioned upon the state of the central
bond is then given by the product of the weights for the left
and right branches. Each of the partial partition functions
includes the Boltzmann weight corresponding to the state of
the central bond, which is thus counted twice in the full
partition function. This double counting is corrected by di-
viding each term by the relevant Boltzmann weight. Sum-
ming over all the possible states for the central bond gives
the total �normalized� partition function, z:

FIG. 2. The Bethe lattice representation of the two-dimensional
lattice. The dotted box shows the central bond, exhibiting the de-
sired square-lattice geometry.
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z = �
�

w�
2

	�

. �10�

In the usual way, the probability of finding a given bond in
state � is given by the partition function conditioned upon
this state divided by the total partition function, i.e.,

p� =
w�

2

z	�

. �11�

It should be noted that the density � of the walk on the lattice
is simply

� = p1 + 2p2. �12�

Another quantity of interest is the fraction of paired seg-
ments given by

� =
2p2

�
. �13�

The grand potential per site may be related to z and q
through the relation

�f =
�k − 1�ln z − 2 ln q

2
= ln z − ln q , �14�

for the square lattice �k=3�. For a full derivation of this
expression see �4�. When multiple solutions to the recurrence
relations exist, the solution with the lowest value of the
grand potential is the stable equilibrium solution.

IV. RESULTS

It is convenient to recast recursion relations �5�–�8� by
setting

x1 =
w1

w0
,

xS =
wS

w0
,

x2 =
w2

w0
.

The different phases and transition lines correspond to
different solutions of the recursion equations. These equa-
tions have a trivial solution x1=xS=x2=0 corresponding to
the finite polymer phase. The density is trivially zero, since
the lattice is infinite. In what follows we refer to this phase as
the O phase. Nontrivial solutions may be found by setting
different values of the parameters K, �, and xS and then solv-
ing numerically for �, x1, and x2.

The trivial zero-density phase is separated from a region
where the walk fills the lattice with a finite density by a
surface K=K�� ,�� where the average length of the walk
first diverges. In the finite-density region we find two dense
phases: a phase �I� in which a finite fraction of the segments
of the walk are paired, i.e., it is characterized by 0���1
and 0���1 and a fully paired dense phase �II� in which

every segment is paired, i.e., it is characterized by 0��
�1 and �=1.

When �=0 �giving x2�0� the pairing of segments is for-
bidden and the model corresponds to the standard interacting
self-avoiding walk model. For this model, also called the
�-point model �1�, phases O and I are separated by a critical
transition line for small enough � and a first-order line for
large enough �. These two behaviors are separated by the
tricritical � point. This tricritical point extends to a line of
tricritical points as � is allowed to increase, separating a
critical region in the SAW universality class from the first-
order region, where the walk fills the lattice with a finite
density. It is possible to determine analytically the region
occupied by the SAW phase, and so the equation of the tri-
critical line, as follows: from phase I �x1�0� we take the
limit xS→0 and x2→0 in order to approach the boundary
with phase O. Since the transition is continuous, this limit
leads to x1→0 and gives K=1 / �2d−1�=1 /3. The tricritical
point is obtained by allowing the parameters x1, xS, and x2 to
be vanishingly small but nonzero along the transition line
K=1 /3. We obtain the tricritical condition:

����� =
9�3 − 2��

4�� − 1� + 5�3 − 2��
. �15�

It is important to note that there is no guarantee that the
extended line is in the same universality class as the � point,
but we will nevertheless use the � subscript to differentiate
it from other special points in the phase diagram. We shall
return to this point later. If the pairing interaction is taken to
be attractive, then ��1, this leads to the result that the tran-
sition line O-I becomes fully first order for ��4 /3.

The phase diagram for �=1 is shown in Fig. 3, clearly
showing the location of the tricritical �-like point, found to
be K=1 /3 and ��=9 /5. The phase boundary of phase I is
smooth, with the boundary between phases I and II being
partly first order and partly second order. This gives rise to
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FIG. 3. The phase diagram in the K−� plane, with �=1. O
denotes the zero density phase, I the ordinary dense phase, and II
the fully paired dense phase. Dashed and solid lines denote first-
and second-order transitions, respectively. The tricritical � point on
the O-I transition line is given by K=1 /3 and ��=9 /5. The second-
order transition between phases O and II is given by the line
3K2�=1 and finishes in a critical end point. The dotted line is the
extension of this line and is included to guide the eye.
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another tricritical point at �tc�4.7. The transition line be-
tween phases O and II is found to be continuous, and the
equation for this line may be determined exactly: from phase
II �x1=0 and x2�0� we take the limit xS→0 to approach the
boundary with phase O. Using the fact that the transition is
continuous, we determine that x2→0 leads to the condition
3K2�=1. This line terminates in a critical end point at �cep
�3.94.

For �=1, i.e., in absence of solvent effects, the phase
diagram is similar to the phase diagram obtained by Pretti �4�
for an RNA-like model with nonzero stacking energy, except
that in Pretti’s case the equivalent to the O-II line was found
to be first order. The stacking energy had the effect of favor-
ing the absence of multiple double bonds meeting at a site,
and so made the model more like the model presented here.

Before examining other values of �, it is of interest to
discuss the different phases shown in Fig. 3 and the relevant
order parameters. Two parameters are of interest for differ-
entiating the different phases: the density of occupied lattice
bonds � and the fraction of paired segments �. These two
quantities are plotted in Fig. 4 for K=0.278, so as to pass
through each phase. In phase O �=0 trivially since the walk
is finite on an infinite lattice. In the framework of the Bethe
approximation it is not possible to calculate � in this phase
��=0, p2=0�. The value of K is chosen to cross the transition
from phase O to phase II under the critical end point. We
clearly see that � increases smoothly from 0, indicative of a
critical transition, and that �=1 indicating that phase II cor-
responds to a saturated doubly occupied phase. Again we
remind the reader that the apparent jump in � is simply
related to the fact that it is not possible to calculate � in
phase O �where p1= p2=0�. The value of K is chosen to cut
back into phase I between the critical end point and the sec-
ond tricritical point. We can clearly see in Fig. 4 that � drops
discontinuously from 1 and there is a small jump in �. The
transition from phase I to phase II is again continuous and
the interest of � as order parameter is clearly seen; there is
no evidence of a phase transition in �, which is not a good
order parameter for phase II.

As � is increased, the phase diagram changes. The first
change is that the �-like tricritical transition is pushed out of
the domain of interest ���0 or ��1�. This occurs, as pre-

viously stated, for �=4 /3. This case is shown in Fig. 5. The
calculation for the transition line between phases O and II
remains valid as � is increased, but for large enough � the
transition is found to be first order, see the phase diagrams in
Figs. 6 and 7. We may determine the condition for this
change in behavior by allowing the parameters xS and x2 to
be vanishingly small but nonzero along the transition line.
We obtain the condition �=3 /2. Thus the O-II line is second
order and given by the equation 3K2�=1 for ��3 /2 and it is
first order for ��3 /2, and falls below the line 3K2�=1. This
behavior may be understood in another way; as �→, the
walk becomes a doubled up self-avoiding walk, with an ef-

fective fugacity per bond K̃=K2�. We may then apply the

known results to find that for K̃�1 /3 the transition from

phase O to the dense phase is continuous, and for K̃�1 /3
the transition is first order. There is a � transition when �

=3 /2 and 3K̃=3K2�=1. Since phase II is a saturated phase,
the walk remains a doubled up self-avoiding walk for finite
�, hence the observed result, and the prediction that for �
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FIG. 4. The two order parameters, the density � and the fraction
of paired segments � as a function of � for �=1 and K=0.278.
Solid and dashed lines denote their values in phases I and II.
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FIG. 5. The phase diagram in the K−� plane, with 4 /3��
=1.4�3 /2. Dashed and solid lines denote first- and second-order
transitions, respectively. The point marked cep is a critical end
point, while tc indicates a tricritical point. The dotted line corre-
sponds to the line 3K2�=1.
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FIG. 6. The phase diagram in the K−� plane, with 3 /2��
=1.6�1.75. Dashed and solid lines denote first- and second-order
transitions, respectively. The point marked tp is a triple point, while
tc appears to be a tricritical point. The dotted line corresponds to the
line 3K2�=1.
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=3 /2 the transition line between phase O and phase II is of
the same type as the � transition. It would be interesting to
ascertain whether this prediction is maintained if a full cal-
culation for the model is performed. For ��3 /2 �see Fig. 5�
the first-order line between phases O and I and the first-order
line between phases I and II are tangential to each other at
the critical end point which defines the end of the critical line
between phases O and II. However, for 3 /2���1.75 �see
Fig. 6� the three first-order lines meet at a triple point �how-
ever the first-order lines between phases O and I and between
I and II are still tangential�. The transition line between
phases I and II changes from first order to second order at a
tricritical point.

Another interesting change arises when ��1.75 �see Fig.
7�. The phase transition between phases I and II becomes
totally second order, and the first-order boundary to phase O
becomes smooth, and the point where the three phases meet
is again a critical end point.

Of particular interest is the phase diagram in the plane
K�� ,��, where the average length of the walk first diverges.
This plane is particularly important, since it corresponds to
the phase diagram which is seen in a canonical simulation of
single finite-sized walk in the limit of infinite walk length.
Indeed it is sometimes referred to as the “thermodynamic

limit” for the canonical dilute polymer problem. The phase
diagram in the K plane is shown in Fig. 8. There are four
different phases differentiated by the values of � and �.
There are two critical �=0 phases, both of which should be
in the self-avoiding walk universality class. One has �=0
�the standard SAW phase� while the other has �=1 corre-
sponding to a double SAW phase. There are two noncritical
phases, one with �=1, corresponding to a standard type of
collapsed phase as seen in the �-point model, except that the
walk is doubled. The other phase has a value of � different
from both 0 and 1.

It is interesting to note that ����� decreases as � increases,
making it easier for the walk to pass from the �=0, �=0
phase to the neighboring dense phase as � is increased. At
first sight this seems odd, however, the formation of some
double bonds enables the formation of a branched polymer
type conformation, which is more naturally space filling.
This would lead one to expect that perhaps the phase bound-
ary between the �=0, �=0 phase and the ��0, 0��
�1 phase may not be in the �-point universality class. The
mean-field nature of the Bethe approximation does not en-
able one to investigate this point.

From previous discussion, the line separating the two �
=1 phases, found at �=3 /2, may be expected to be a line of
tricritical points in the �-point universality class. This line
appears to end at a tricritical end point on a first-order line

1 1.5 2 2.5 3
τ

0

2

4

6

8

10

12

γ

ρ=0 Φ=1

ρ=0 Φ=0

ρ>0 Φ<1

ρ>0 Φ=1

FIG. 8. Phase diagram in the K�� ,�� plane. Solid lines repre-
sent continuous phase transitions, while the points indicate a first-
order transition line.
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FIG. 9. Density � plotted in the K�� ,�� plane as a function of
� for different values of �.
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FIG. 10. Density � plotted in the K�� ,�� plane as a function of
� for different values of �.
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FIG. 7. The phase diagram in the K−� plane, with �=2�1.75.
Dashed and solid lines denote first- and second-order transitions,
respectively. The dotted line corresponds to the line 3K2�=1.
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��=3 /2,��5.89�, which in its turn ends at another tricritical
point at ��1.75, ��7.845. While much could change once
fluctuations are included, one could expect much of the be-
havior seen here to remain in the real system. Figures 9–12
show different plots of � and � showing their behavior at the
different phase boundaries, confirming the orders of the tran-
sitions shown. In Fig. 9 the density is plotted as a function of
� for different values of �. For small values of � two transi-
tions may be clearly seen: The first is a second-order transi-
tion where the density becomes nonzero continuously and
the second, at higher values of �, is first order, where the
density becomes discontinuously zero again. At higher val-
ues of �, the first transition no longer exists for attractive
pairing energies ���1�. For ��3 /2 the density at the sec-
ond transition jumps to a nonzero value, discontinuously at
first, but continuously for higher � �� bigger than about
1.75�. Figures 10 and 11 show plots of � as a function of �
for different � and Fig. 12 shows �, the proportion of paired

bonds, for the same values of �. As may be seen by compar-
ing these figures, � and � are good order parameters for
different phase transitions, notably, when �=9 the density
plot does not show the presence of the phase transition at �
�2, clearly shown in the plot of �.

V. DISCUSSION

In this paper we have investigated the phase diagram of a
noncrossing random walk model on the square lattice where
the walk is allowed to visit lattice bonds twice, and the site
configurations are chosen to represent the zipping/unzipping
of a DNA molecule. Solvent quality is included through at-
tractive nearest-neighbor interactions. This model is exam-
ined in the framework of the Bethe approximation and found
to have a rich phase diagram. While there are limitations to
the method, it usually captures the essential features of the
phase diagram �12,13�. It would be of interest to look at this
model using some other method to confirm and examine fur-
ther the phase diagram presented.
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FIG. 11. Density � plotted in the K�� ,�� plane as a function of
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FIG. 12. Fraction of paired bonds � plotted in the K�� ,��
plane as a function of � for different values of �.
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